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Summary: Realization of the full benefits of variable p-version finite ele-
ments requires the careful construction of prismatic elements in thin sec-
tions. This paper presents a procedure to automatically isolate the thin sec-
tions using the points on an approximate medial surface computed by an
octree-based algorithm. Using the pairs of triangles associated with medial 
surface (MS) points, in conjunction with adjacency, classification and dis-
tance information, sets of surface triangles that are on opposite face 
patches in thin sections are identified. Mesh modifications are then exe-
cuted to match the surface triangulations on the opposite face patches such
that prismatic elements can be generated without diagonal edges through 
the thickness directions. 
Keywords: thin sections, medial surface, prismatic elements

1. Introduction

Historically, the methods used to analyze thin sections involved applying
deformation assumptions to the 3-D elasticity equations allowing the prob-
lem dimensionality to be reduced [1]. The application of such methods re-
quires a reduced dimensional domain model. Application of these methods 
requires the identification of the thin sections and then the application of 
model dimension reduction on those portions of the domain [2]. Handling 
the interconnection between two-dimensional reduced elements to fully
three-dimensional solid elements is another source of difficulty [3]. 

Since the assumptions corresponding to those deformation models are 
equivalent to allowing only low order deformation modes in the thickness
direction, an alternative is to apply full three-dimensional model discre-
tized with p-version finite elements with low polynomial order through the 
thickness [4, 5, 6]. Tetrahedral meshes cannot effectively be used to im-
plement the appropriate low order deformation modes through the thick-
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ness due to the presence of the through the thickness diagonals. Therefore
a mesh that contains a single element through the thickness without
through the thickness diagonals is needed. 

The automatic generation of meshes for general 3-D domains with such 
elements (prism of hexahedra) in the thin sections is not a straightforward
process, particularly in the case where adaptive p-version finite element 
methods are applied that will require large curved elements of high poly-
nomial order in the other directions. This paper reports on the status of ef-
forts to development mesh generation procedures aimed at producing the
desired p-version curved finite elements for models containing thin sec-
tions. 

A key challenge to properly mesh the thin sections in general geometri-
cal models is to identify and isolate thin sections from the rest of the do-
main. Most of efforts on meshing a thin section use a priori information on
the thin section [7]. One approach identified as appropriate for identifying 
thin sections is the medial surface [2, 8]. The medial surface is the locus of
the center of a maximum sphere rolls around the interior of the model. It is 
the set of interior points that is equidistant to more than one points on the 
model boundary. The medial surface can provide the following informa-
tion on the region’s geometry and topology [9]: 
• Indication of local feature size (or local thickness) by the distance from 

a medial surface point to its closest boundary points 
• Information on ‘opposite’ boundary points by relating the closest

boundary points to a medial surface point.
The medial surface has been used to partition the geometry model into

easily meshable subregions by several authors to generate volume mesh,
for example [9,  10, 11]. Other mesh-related applications of medial surface
include construction of three-dimensional anisotropic geometric metrics 
for geometric adaptation [12].  In the present procedure we determine and 
use a limited number of points on an approximation medial surface to
identify the thin sections and generate prismatic layer mesh through thick-
ness.

Section 2 presents the criteria to identify pairs of opposite triangles on 
the thin sections based on points on the medial surface for a classified sur-
face triangulation of the model and gives an octree-based algorithm for
their determination. Section 3 discusses the procedure that given those
pairs of triangles determines any missing thin section triangles and isolates
the thin sections. Section 4 considers the procedures for then meshing the 
thin sections. A general volume mesh generator is applied to fill the re-
maining domains for p-version adaptive analysis. The geometric approxi-
mation required by the p-version finite elements is achieved by applying a



Identifying and Meshing Thin Sections of 3-d Curved Domains  35 

curving procedure in [13, 14]. Section 5 presents an example to show the
benefits of above meshing procedure in p-version analysis. 

1.1 Nomenclature 

d
iM  the i-th mesh entity of dimension d, d=0 for vertex, d=1 for an edge,

d=2 for a face. 
d
iM the closure of the i-th mesh entity of dimension d = 1 or 2. 

d
iG   the i-th entity of dimension d in geometry model. 

[    classification symbol used to indicate the associated of one or more
mesh entities with an entity in geometry model [15]. 

iO    the i-th octant. 
d
iO  the i-th octant entity of dimension d, d=0 for octant vertex, d=1 for oc-

tant edge.
0
iE the i-th medial surface point. 
( )•p   single closest point from entity •  of dimension 0 to surface mesh. 
( )•ip  the i-th closest point from entity • of dimension 0 to surface mesh.

2. Determination of Medial Surface Points and Associated 
Triangle Pairs 

2.1 Criteria to Define Thin Section Triangle Pairs 

The definition of a thin section is closely related to size of and order of the
elements in the mesh. The geometric characteristic for a thin section is the 
dimension through the thickness is far less than the “in-plane” dimensions. 
We identify the thin sections using a surface triangulation of the model.
The basic idea is to find pairs of triangles on “opposite model faces” that
are close to each other relative to their size, thus indicating they are within 
a thin section. 

A point on the medial surface can provide the local thickness [9] by the 
distance to its closest boundary points and ‘opposite’ boundary points by 
relating the closest boundary points. Therefore, the concerned pair of the
opposite triangles can be defined based on a medial surface point as fol-
lows.
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A pair of triangles 2
iM  and 2

iM ′  is candidate thin section triangle pair if 
there exist a pair of closest boundary points 1P  and 2P  from a medial sur-

face point 0
iE , such that 2

1 iMP ⊂  and 2

2 iMP ′⊂ , where the 1P and 2P  have
following properties:

(1) The ratio of thickness (defined as the diameter of the maximum in-
scribed sphere associated with 0

iE ) to the average size of 2
iM  and 2

iM ′  is 
smaller than a default value, for example 1/3 of the average edge length of
the element.

(2) The angle formed by the outward normal to 2
iM  and 2

iM ′ is close to 
π .
The situation of the medial surface point defined by conditions of (1) and 
(2) is shown in Fig. 1. 

2P

1P

2
iM ′

2
iM

Closest point 

MS point

MS0
iE

Closest point 

Fig. 1. A thin section triangle pair identified by a medial surface point 0
iE

A candidate thin section triangle pair is further processed to ensure that all 
points on their closures meet those conditions. The key step to identify the 
thin section triangle pairs is to calculate the points on the medial surface of
the classified surface triangulation. We use octree to calculate the medial 
surface points with the goal of identifying most, but not all, triangles in the 
thin sections. 

2.2 Octree-Based Algorithm to Compute the Medial Surface 
Points

The medial surface points are calculated for a classified surface triangula-
tion. The classification information of the surface triangulation is used to 
ignore the medial surface branches of the triangulated model that do not 
exist in the smooth curved model. That is, the two closest points of a me-
dial surface point on two adjacent triangles that are classified on one C1

continuous model face will be ignored in the calculations. From the prop-
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erty that a closed geometrical model has a closed set of medial surfaces
[16], a medial octant tracing algorithm was constructed. In this algorithm,
medial octants are defined as octants that intersect medial surface as 1O

and 2O shown in Fig. 2. The steps of the tracing algorithm are as follows.
• Construct octree by inserting surface mesh entities into boundary oc-

tants.
• Determine an octant with an edge that intersects the medial surface.
• Resolve all intersections of that octant edge by a traversal algorithm.
• Continue the traversal on the other edges until all intersections are re-

solved.
• Move to neighboring octants of the intersection points to process their

other octant edge/medial surface intersections.
The above tracing procedure can be illustrated by Fig. 2. Suppose by the
traversal algorithm discussed below, we resolve the intersections shown as

0
1E , 0

2E  and 0
3E  on the edges of 1O . After that we move to the next medial

octant 2O  adjacent to 0
3E  to process the other intersection points on all the

edges of 2O . The procedure will repeat until no new neighbor medial oc-
tant can be found.

1O 2O0
1E

0
2E

0
3E

Fig. 2. Move from one resolved medial octant 1O  to the next octant 2O adjacent to
a known medial surface point 0

3E to calculate other new intersection locations. 

To control the medial octant size, before calculating intersections, recur-
sively subdivide the neighbor medial octants to be no more than one level 
different. Further subdivide the medial octant to the same order of the size 
of surface triangles that are closest to the octant vertices.
The goal of the algorithm is to determine the intersection between an oc-
tant edge and the medial surface. An octant edge can have multiple inter-
sections. To determine those intersections, we employ the relationship
among Voronoi regions and medial surface [8] for polyhedron. The medial
surface of a convex polyhedron is identical to its Voronoi diagram which 
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is defined as the boundaries of the Voronoi regions. If a polyhedron is non-
convex, the Voronoi diagram is a superset of medial surface. In the pres-
ence of concave edges whose interior dihedral angles π>iw , the Voronoi
region associated with each of concave edges is a particular subregion 
bounded by a portion of the medial surface and planes perpendicular to the
boundary planes at the concave edge and intersect the medial surface.  In
this case, the difference between the medial surface and Voronoi diagram 
is that medial surface does not include planes of the Voronoi diagram inci-
dent at the concave edges, shown as the dash lines in Fig. 3, where the dot
lines is medial surface. 

Fig. 3.  Relationship among Voronoi regions, Voronoi diagram and medial sur-
face. 

Taking into account non-convex region cases, an octant edge with bound-
ing vertices closest to two different surface entities (i.e. in two different
Voronoi regions associated with the two entities) that are not adjacent to 
one re-entrant edge or corners, intersects the medial surface.  The closest
point ( )0

1Op  determines the Voronoi region that the vertex 0
1O is in.  That is, 

if ( )0
1Op  is found on a surface entity, then 0

1O is in the Voronoi region as-
sociated with that surface entity. The current octree is employed to deter-
mine the closest point information. The procedure to resolve the intersec-
tions is as follows: 

Assume there is just one intersection on the edge bounded by 0
1O  and 

0
2O . Using the equidistant condition to the boundary entities whose associ-

ated Voronoi regions 0
1O  and 0

2O  are in, the location of the intersection can
be found for the parameter t in the interpolation formulation

( ) 0
2

0
1

0 1 OOE tti +−= (1) 
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where the bold letters denotes the location vectors at the corresponding 
vertices. Note a Voronoi region in a polyhedron could be associated with
face, concave edge or concave corner. For the case that two Voronoi re-
gions are associated with two faces as shown in Fig. 4, t is given as 

( )
( ) ( ) 2

0
1

0
21

0
2

0
1

122
0
1

0
2

nOOnOO
nOO

⋅−+⋅−
−+⋅−= ddt  (2)

where 1d  and 2d are distances from 0
1O  and 0

2O  to their closest points on
boundary, 1n  and 2n are unit vectors from 0

1O  and 0
2O to their closest

points, respectively. Note that Eqn (2) is also valid when 0
1O  and 0

2O  are on
the boundary, which leads to 1d  and 2d  equal to zero, and 1n  and 2n  are
in the outward normal directions to the faces where  0

1O  and 0
2O  are on. 

Fig. 4. Medial surface point calculation 

If ( )0
1Op  or ( )0

2Op  is on concave edge or concave vertex, the equidistant
condition leads to a quadratic equation to solve the parameter t in Eqn (1). 

After getting the assumed intersection in Eqn (1), we request its closest 
points on the boundary.  If multiple closest points are returned there is a 
single intersection. If a single closest point is returned there are multiple 
intersections, in which case subdivide the edge at that location and repeat
until the intersections are resolved.  

The efficiency of the above algorithm is illustrating using Fig. 5. Given 
the octant edge whose bounding vertices are 0

1O  and 0
2O , we obtain the

closest points on the boundary to 0
1O  and 0

2O  and an assumed medial sur-
face intersection point 0

jE  is found.  The closest point to 0
jE is a single

point ( )0
jEp , thus indicating the point is not on the medial surface. After

subdivide the edge at 0
jE , we obtain the correct intersection points, one on 

each sub-edge bounded by ( )00
1 , jEO   and ( )0

2
0 , OE j .
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It is noted the tracing algorithm can start from a convex model edge
whose interior dihedral angle is π<iw , or by a medial surface point calcu-
lated on a ray in the direction of the normal to a surface triangle to the inte-
rior of model by the above edge intersection algorithm. Operations to cal-
culate medial surface points are not applied to octant edges external to the
model.

Fig. 6 shows a result of the above algorithm for an example. Fig. 6(b)
shows the medial octants that are traversed by the above tracing algorithm.
The medial octant sizes are refined to match surface mesh size. 

0
2O

0
1O

0
jE

( )0
2 jp E

( )0
1 jp E

( )0
jp E

Fig. 5. Multiple intersection on the edge bounded by 0
1O  and 0

2O

Fig. 6. (a) Model; (b) traversed medial octants.
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3 Defining Thin Sections 

The medial surface point calculations provide a set of unorganized and in-
complete thin section triangle pairs. We organize the thin section triangles 
in the sets using knowledge of which model faces they are classified on. 
After the initial sets are constructed, the missing thin section triangles are 
determined. The procedure has three steps: 
• Collect starting triangle sets using classification information.  
• Complete the triangle sets to define thin section surface patches 
• Construct the loops for each thin section surface patch and match the 

loops on the boundary of opposite thin section patches. 

3.1 Collect Starting Thin Section Triangle Sets 

Given medial surface point 0
iE , introduce

= not thin
thinE i 0

1
*

0  (3)

to indicate when 0
iE  defines a thin section triangle pair. 1

*

0 =iE indicates
the medial surface point is associated with thin triangle pair and 0

*

0 =iE

means they are not part of a thin section, see Section 2.1. Denote the trian-
gle pair as 

[ ] { }22
*

0 , kki MME ′= . (4) 

With the above notations, a starting thin section triangle set is defined as 

[ [ ]{ }1andandˆ
*

0
*

022222 =∈= llijiij EEMGMMG  (5)

Note that each 2ˆ
jG is uniquely associated with model face 2

jG . For this
unique association, the identity tags of “opposite” sets for 2ˆ

jG  can be re-

corded during the construction of 2ˆ
jG . Generally, 2ˆ

jG may have one or 

more opposite sets denoted as )ˆ( 2
jGopp . A simple example in Fig. 7 shows 

{ }222
1 ,ˆ

ba MMG = , { }2
3

2
1

ˆ)ˆ( GGopp = ; { }2222
2 ,,ˆ

edc MMMG = , { }2
3

2
2

ˆ)ˆ( GGopp =  and
{ }222222

3 ,,,,ˆ
edcba MMMMMG ′′′′′= , { }2

2
2
1

2
3

ˆ,ˆ)ˆ( GGGopp = .
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2
1G

2
3G

2
aM

2
aM ′

2
bM ′

2
cM ′

2
2G1

1G
2
bM 2

cM 2
dM

2
dM ′

2
eM

2
eM ′

Fig. 7. An example to demonstrate the starting triangle sets

Note sets at this point may have to be later split or merge to represent a
thin section surface patch.

3.2 Determining the Missing Thin Section Triangles 

The majority of thin section triangles are identified by the medial surface
points in the tracing algorithm but some are missed, see Figure 8 (a),
where the dark shaded triangle faces are the identified thin section trian-
gles. 

Fig. 8. (a) Geometry model with thin section; (b) Thin section triangles obtained 
by medial surface points; (c) The completed thin section surface patches. 

Thin Sec-
ti
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To determine whether a missing triangle 2
eM  on 2

jG  belongs to 2ˆ
jG , local

thickness eh  at 2
eM  is compared with the local thickness ih  at an edge ad-

jacent triangle 2
iM that is inside 2ˆ

jG .  If iie hhh −  is smaller than a default 

value, place 2
eM  in 2ˆ

jG . The local thickness eh  at 2
eM  is obtained by 

searching for the closest point on the triangles classified on the model
faces that are known to be opposite to 2

jG . The triangle 2
eM ′  that the closest

point is on is defined as opposite triangle to 2
eM . Also place 2

eM ′  in the set
that is opposite to 2ˆ

jG  if it is not there already. Note, 2
eM ′  must be in the

neighborhood of 2
iM ′  which is opposite to 2

iM . The search is a local opera-
tion. Fig 8 shows an example before (Fig 8 (b)) and after completing the 
thin section triangle sets (Fig. 8(c)). In Fig 8(b), the faces in black are de-
termined by medial surface points and those in gray on the thin sections
are missing surface triangles. Fig. 8(c) shows all the thin section triangles 
are recovered shown in black. Note the boundary edges of 2ˆ

jG  can also be
identified as those used by only one triangle in the set. We denote the set 
of boundary edges of 2ˆ

jG  as 2ˆ
jG∂ .

3.3 Construct the Boundary Loops on Thin Section Surface 
Patches

To complete the definition of the thin section surface patches opposite
each other, the loops on the boundary of surface patches have to be 
matched. The process can lead to the need to split surface patches. Figure 9
(a) shows an example that has three thin section surface patches, where 2

3Ĝ

is opposite to 2
1Ĝ  and 2

2Ĝ  with each loop on each of the sets. In this case,
splitting 2

3Ĝ  to form two loops on 2
3Ĝ  to match the loops on 2

1Ĝ  and 2
2Ĝ  is 

needed as shown in Fig. 9 (b). Note the loops in 2
1Ĝ  and 2

2Ĝ  cannot be 
merged to form one loop since the model edge must be used in the volume
mesh generation. 



44  Luzhong Yin, Xiaojuan Luo, Mark S. Shephard

2
1Ĝ 2

2Ĝ

2
3Ĝ

Fig. 9. (a) Loops on thin section surface patches (b) Opposite loops 

The procedure to create the loop kL  and its opposite loop kL ′ can be started 
from any 21 ˆ

jf GM ∂∈  which looks for its opposite edge 21 ˆ
jf GM ′′ ∂∈  through the

opposite triangles in following steps:
• If 21 ˆ

jf GM ∂∈  can find its opposite edge 21 ˆ
jf GM ′′ ∂∈ , the procedure contin-

ues to process the next edge 21 ˆ
jd GM ∂∈  adjacent to 1

fM . For example, in

Fig. 9(a), the edge 2
1

1
1 ĜM ∂∈′  is found opposite to 2

3
1
1 ĜM ∂∈ . The next 

edge 2
3

1
2 ĜM ∂∈ adjacent to 1

1M  is processed.   
• If 21 ˆ

jd GM ∂∈  cannot find its opposite edge on 2ˆ
jG ′∂ , then from the edge

21 ˆ
ja GM ′′ ∂∈  adjacent to 21 ˆ

jf GM ′′ ∂∈ , its opposite edge is found from the inte-

rior edges of 2ˆ
jG  adjacent to 1

fM . Fig. 9 shows a such case, where
2
3

1
2 ĜM ∂∈  cannot find an opposite edge on 2

1Ĝ∂ , therefore, from 2
1

1
3 ĜM ∂∈′

adjacent to 1
1′M , the interior edge 1

3M  is found opposite to it. The proce-
dure leads to split thin section surface patches from Section 3.2 as 
shown in Fig. 9(b).

In the above procedure, the interior edge refers to the edge not belonging 
to 2ˆ

jG∂  but on the closure of the triangles in 2ˆ
jG .

4. Meshing Thin Sections

The thin section information obtained from Section 3 is characterized by a
pair of opposite thin section surface patches with paired closed opposite
loops as boundaries. To generate structured prismatic elements without 
long diagonal edges through the thickness the opposite triangulation sets
for thin section surface patch must be topologically matched and be geo-
metrically similar. 

2
1Ĝ 2

2Ĝ

2
3Ĝ

1
1M

1
1′M

1
2M

1
3′M

1
3M
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4.1 Overall Algorithm  

The overall procedure to mesh each thin section consists of the following
steps: 
• Apply local mesh modifications to match the thin section boundaries 
• Delete the surface triangulation of one triangle set
• Copying the remaining triangulation to its opposite model face 
• Connect the matched triangulations to form prismatic elements 

4.2 Boundary Matching

The procedure to match the boundaries of the triangle sets for a thin sec-
tion can be divided into two continuous operations. First, apply split or 
collapse operations to modify the mesh topology to ensure the mesh edges
in each paired opposite loops are one-to-one matched. Second, the desired
target locations for the vertices in the loops are computed and local mesh
modifications as in [13] are applied to incrementally move the vertices to-
wards to the target locations.

4.2.1 Topological Matching

For each pair of opposite loops, the process begins to traverse one loop 
through vertex adjacency information from one selected starting mesh 
edge and vertex to match the topological configuration to its opposite loop. 
Split and/or collapse operations are used to keep a loop iL  one-to-one
matching with its opposite loop iL ′ .  The procedure starts from a vertex 
with lowest dimensional classification. 

For each mesh edge 1
iM  in the closed loop iL , retrieve the attached 

edges }{ 1
'j

M  in the opposite closed loop 'i
L . Let 

=
unassign
assigned

M
j ,0

,1
|| *1

'  (4)

be the operation to determine whether the mesh edge 1
'j

M  already associ-

ates with one mesh edge in loop iL . If only one mesh edge 1
'j

M  is attached

and 0|| *1
' =

j
M , let 1

'j
M  associate with 1

iM  and update 1|| *1
' =

j
M  and continue

to next mesh edge 1
1+iM . Otherwise, either split or collapse is applied to

produce or eliminate mesh edges to maintain the one-to-one matching. As
examples, Figure 10 shows that a split operation is applied on mesh edge 
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1
'1

M to produce one more edge 1
'2

M to obtain the matched pair edges
),( 1

'1

1
1 MM  and ),( 1

'2

1
2 MM  then update 1|| *1

'2
=M . Considering the mesh vertices 

will be moved in the next step, the split operation applied currently does 
not snap the new introduced vertices to the model boundary. 

Fig. 10. Split operation to assign one-to-one match for mesh edge 1
2M

4.2.2 Target Location for Vertices in the Opposite Model Face 

To achieve the geometrical similarity between the two triangle sets for a 
thin section, each vertex 0

iM  in one triangle set need to compute an appro-
priate location for its matched vertex 0

'i
M  on the opposite model face. The 

target location for 0
'i

M  is obtained by first computing the closest point 
0

iP on the mesh face 2
'i

M  classified on the opposite model face to 0
iM , and 

then, projecting 0
iP  to the model face by the model parameters of 0

iP  de-
termined by the interpolation of 0

iP  on the triangle face 2
'i

M .

4.2.3 Incrementally Move Vertices on the Thin Section 
Boundary 

The movement of the mesh vertices on the thin section boundary loop
'i

L can cause the surface mesh to become invalid. Fig 11 shows an example
where two triangle faces marked as shaded in Fig 11(b) become invalid 
because of moving vertices 0

'2
M to its target locations. This problem is 

avoided by applying the following procedure [13]: 
• Put all of the vertices with attached target locations into a list 
• Traverse the list and deal with one vertex at each step
• If the vertex moves to the target location without causing any problem,

move it and remove it from the list. Otherwise, apply local mesh modi-
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fications to correct the invalid elements. Remove the vertex from the list 
(See reference [13]). 

Fig. 11. (a) Move 0
'0

M and 0
'1

M . (b) Move 0
'2

M , invalid faces marked as shaded. (c)

Collapse 0
'5

M to 0
'2

M .

4.3 Surface Triangulation Matching 

The surface triangulation matching between the two triangle sets for a 
thin section is achieved through the triangulation deletion of one triangle 
set and the copying of the remaining triangle set to the opposite model
face. The key technique is the location computation of the copied vertices 
on the opposite model face. This is accomplished by the interpolation 
strategy discussed in Section 4.2

4.4 Volume Mesh Generation

With the topologically and geometrically matched surface triangulation 
for thin sections, the volume mesh generation procedure constructs pris-
matic elements by directly connecting each paired triangles classified on
the two opposite model faces. Because the generalized volume mesh gen-
erator requires the exposure mesh faces to be triangles, one layer of pyra-
mid elements are added neighboring to the interior quadrilateral faces of 
the structured prismatic elements. 

4.5 Examples 

Two example models with thin sections are given in Figure 12. The first 
row shows the input surface triangulation for the two models. The second
row shows just the isolated opposite thin section surface patches after loop 
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construction and loop matching. As can be seen from the figures the two
surface meshes are not yet matched. The bottom row shows the final
meshes where the thin section meshes have been matched, the prismatic
thin section elements created, volume mesh completed and the mesh prop-
erly curved to the domain boundary. 

5. p-Version Analysis Example for Model with Thin
Sections 

In this section, a structural part with thin sections shown in Figure 13 is
analyzed using p-version method. Due to the symmetry of the problem,
only one half of domain is analyzed by assigning properly symmetric
boundary conditions. For this particular model, there are two portions of
the domain can be regarded as thin sections with thickness 0.5 (marked in
Figure 13) determined by the dimensions of the model.
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Figure 12: Examples meshes for models with thin sections: Surface triangulations
(top). Thin sections (middle). Curved meshes with prismatic elements (bottom).

Fig. 13. Geometric model of the structural part with thin sections 
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 (a)  (b) 
Fig. 14. Two meshes for one quarter of the domain 

Figure 14 shows two curved meshes for the one half of the domain. The
mesh in Figure 14(a) is generated by the automatic tetrahedral volume
mesh generators and the mesh in Figure 14(b) is generated using the pro-
cedure presented in this paper that has mixed topological elements. The
two thin section structures are meshed with prismatic elements without di-
agonal edge through the thickness directions in Figure 14(b) comparing to
the all tetrahedral element mesh. Table 1 presents the summary of these
two meshes and the statistic indicates that number of elements for mixed 
topological mesh has been reduced almost 50% comparing to the all tetra-
hedral mesh. 

Table 1. The comparision between the two meshes 

 Regions Faces Edge
s

Vertice
s

All tetraheral 131 328 264 67 
Mixed
topology

66 197 194 63 

 Tet Pris
m

Pyrami
d

Tri Quad 

 38 24 4 149 48

The material is assumed to be linearly elastic with Young’s modulus E = 
200,000PA and Poission’s ratio v =0.33. The quadratic z direction pressure

2)5.4/(.1 xp −= is applied on the inner circular surface that will cause the
bending of the thin sections. The problem is analyzed using:
• Uniform p-version method that varies the polynomial from p=2 to p=8. 
• Adaptive p-version method that enriches the polynomial independently

at each coordinate directions of the elements. 
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The implicit element residual posterior error estimator [17] is applied to 
evaluate the solution accuracy in relative error in energy norm re as

%%%
uu

e
u
uu

e k
k

X
r ==

−
=

η

(5) 

where u , Xu are the exact solution and finite element solution of the prob-
lem. Xuue −= defines the error and kη is the elemental error estimator 
[17]. u is the exact strain energy. Since the true exact value is not known,
we adopt the value 53.7761 computed from StressCheck [18] on a mesh 
with 3081 tetrahedral regions at polynomial order 8. Table 2 presents the 
analysis results with respect to the number of degree of freedom for uni-
form p-version method and Table 3 for adaptive p-version method.

Table 2: Uniform p-version analysis results 

All tetrahedral mesh Mixed topology mesh
p-

order 
Dof re Dof re

2 890 60.42 710 47.74
3 2566 28.86 1699 15.39
4 5586 17.78 3380 12.20
5 10343 11.61 5939 7.39 
6 17230 7.76 9574 4.13 
7 26640 5.56 14483 2.16 
8 38966 4.15 20864 1.57 

Table 3: Adaptive p-version analysis results 

All tetrahedral mesh Mixed topology
mesh

Iteration 
step

Dof re Dof re

1 890 60.42 710 47.74 
2 2635 24.02 1925 14.35 
3 2837 22.08 2145 10.46 
4 3371 17.06 3536 8.87
5 4129 11.19 5767 4.36
6 4432 9.02 6768 1.97



52  Luzhong Yin, Xiaojuan Luo, Mark S. Shephard

Results show that, 
• In case of the uniform p-version method, the mixed topology mesh can 

obtain more accurate solution (1.57%) than the all tetrahedral mesh 
(4.15%) with only 54% of the degrees of freedom.

• In case of the adaptive p-version method for the all tetrahedral mesh, the
adaptive analysis stops after 6 iteration steps with an unsatisfied solution 
accuracy level (9.02%) because some elements reached the polynomial 
limitation p=8. 

• For the mixed topology mesh, the adaptive p-version method uses only
47% of the degrees of freedom than used for uniform p-version method 
to achieve an solution accuracy that is slightly better. The highest poly-
nomial order at the last step is p=7 for the elements next to the fixed cyl-
inder hole. 

6. Closing Remarks

The paper presented a procedure to automatically isolate and mesh thin 
sections of 3-D solid models with prismatic elements for directional p-
version finite element analysis. Key ingredients of the procedure are: 
• Construction of an octant tracing algorithm to calculate a limited num-

ber of medial surface points to define the thin section triangle pairs, 
• A strategy to organize the thin section triangle pairs to define thin sec-

tion face patches that are opposite to each other, 
• A procedure to generate prismatic volume mesh by copying one side of

surface mesh to the other side and connecting the corresponding oppo-
site vertices. 
Uniform p-version analysis results clearly demonstrated that the mixed 

topology mesh generated by the presented procedure for model with thin
section can obtain more accurate solution substantially fewer degree of
freedom than the mesh with all tetrahedral elements. 
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